ID Risk-HCC: Identification of Medications and Confounding Risk Factors Associated with Hospital Admission within Island Health Home and Community Care (HCC) Population

Gina Cragg, BSc(Pharm); Donna Goring BSc(Pharm); Holly Sulsbury BSc(Pharm); Donna K Buna, BSc(Pharm), PharmD

Introduction

- ❖ Medication discrepancies increase at transitions of care.¹
- ❖ A best possible medication history (BPMH) decreases medication discrepancies and increases patient medication safety.¹
- Professionals with expertise and training to conduct an accurate and complete BPMH are a limited resource while client numbers on Vancouver Island increase.
- ❖ Identification of specific risk factors, including medications implicated in adverse drug reactions (ADRs), is needed to identify individuals likely to benefit from a BPMH. This is an Accreditation Canada standard for HCC.²
- Majority of Home and Community Care (HCC) Clients take one or more medications with potentially high risk ADRs.

Uniqueness of Research

- ❖ Medication Safety research has been limited in Vancouver Island HCC providing little support for policy improvement.
- ❖ Focus on the Island Health HCC population vs. published data.
- Use of inpatient acute hospitalization admission through the emergency room (ER) as an indirect measurement of ADRs.

Study Objective

To determine if high-risk medications* or other factors can be used to identify clients most likely to benefit from a BPMH.

Primary Outcome: Proportion of clients with an inpatient acute hospital admission 90 days after a HCC referral, prescribed one or more high-risk* medication.

Secondary Outcomes: 1) Incidence of high-risk medication classes taken among the group 2) Average number of medications prescribed 3) Number of clients with delegation of task (DOT).

<u>Delegation of task</u>: Medication administration by a healthcare worker.

*High-risk medications were defined as warfarin, direct acting oral anticoagulants (DOACs), hypoglycemic agents, opioids, diuretics, digoxin, regularly scheduled non-steroidal anti-inflammatory drugs (NSAIDs) and ASA

Methods

Design

- * Retrospective Chart Review of BPMHs at HCC sites in Victoria (South Island) and Nanaimo (Center Island).
- ❖ Recorded high-risk medications* (individual and total number), total number of medications and DOT status of clients with an inpatient acute admissions 90 days after referral to HCC since January 2015.

Exclusion

(BMPH) unavailable or met exclusion

Best possible medication history

Inpatient acute admission confirmed through PowerChart.

Inclusion

HCC clients 65 years of age and older with

a referral for Nursing, a Nurse Practitioner

Study population:

 and/or Pharmacy since January 2015 Acute inpatient hospital admission through ER within 90 days of HCC referral BPMH completed by a nurse, nurse practitioner or pharmacist following referral available in client's chart At least one study medication documented on client's BPMH 	 All eye drops, nose sprays, creams/ gels/ointments and topicals (unless regularly scheduled HRT) Study medications only as needed (prns) All OTCs except regularly scheduled ASA 81mg or NSAIDs Evidence of planned hospital admissions (within 30 days) Current cyclical chemotherapy Immunosuppressive agents if tapering schedule included, prn or fixed duration
	Scriedare inferdactory print or fixed daractori

criteria

Results **Table 1:** Baseline Demographics Hospitalized Hospitalized Control 80-84 80-84 Mean Age Control 85+ Median Age Table 2: Total Number of High Risk Medications Std. Dev Population Mean 95% CI Number Of High-Risk Medication Hospitalized 1.57 1.344 1.38-1.77 Figure 2: Total Number of High 1.34 1.18-1.51 1.097 Control Risk Medications Taken Hospitalized Hospitalized Control Control Number Of High-Risk Medication Number Of High-Risk Medication

Figure 3: Number of High Risk

Medications in Victoria Population

Figure 4: Number of High Risk

Medications in Nanaimo Population

Results Control **Table 3:** Total Number of Medications **Total Number of Medications Taken** 95% CI Std. Dev Population 5.37 4.95-5.79 2.856 Hospitalized 4.59 4.22-4.96 2.494 Control 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Number Of Medications Figure 5: Total Number of Medications Slope = 1.116; P=0.007

Hospitalization vs. Number of Medications Taken

Figure 6: Linear Regression Plot Risk of

Findinas

Discussion

- ❖ Trend towards increasing number of medications and an increased risk hospitalization of 1.116 (p=0.007) for each additional medication taken (Figure 6).
- No significant correlation between the number of high risk medications* and increased hospitalization observed (Figure 2 and Table 2).
- ❖ A trend suggesting inter-site variability observed and regional differences (Figure 3 and 4).
- Diuretics, hypoglycemics and opioids appeared to correlate with hospitalization at both sites although a larger sample size is required (data not shown).
- Subgroup analysis suggests inter-site variability in the correlation of certain high-risk medications and hospitalization. This may limit pooling of Island-wide data.
- The incidence of DOT was higher in patients with a higher number of total medications and a hospitalization.

Limitations

- ❖ Insufficient power to show a statistically significant difference.
- Confounding factors including disease states (i.e. congestive heart failure and diuretic use) may have resulted in hospital admission vs. ADRs.
- ❖ Data quality was dependent on the thoroughness of the BPMH.
- ❖ HCC Clients often had prior referrals, thus unnecessary or inappropriate medications may have been eliminated earlier in care.

Conclusion

- ❖ Given the sample size, conclusive data cannot be drawn from this pilot study. Further studies are needed to determine if high-risk medications or DOT may be used to identify Island Health HCC clients most likely to benefit most from a BPMH.
- There was a statistically significant increase in hospitalization and the number of medications taken. This could be a focus for future studies.
- Regional differences between certain high-risk medications was observed. Data pooling between geographic island wide locations should be approached with caution in future studies.